
www.manaraa.com

Examining Active Error in Software Development

Tamara Lopez1, Marian Petre1 and Bashar Nuseibeh1, 2
1Centre for Research in Computing, The Open University, United Kingdom

2Lero The Irish Software Engineering Research Centre, Ireland
{t.lopez, m.petre, b.nuseibeh}@open.ac.uk

Abstract—Software rarely works as intended while it is being
written. Things go wrong in the midst of everyday practice, and
developers are commonly understood to form theories and
strategies for dealing with them. Errors in this sense are not
bugs left behind in software, they are actively encountered and
experienced. This paper reports findings of an ethnographically-
informed study undertaken to examine error encountered at the
desk. Films depicting paired open-source development practice
over the course of a month were analyzed to identify and
delineate instances of active error. Instances were interpreted
within a framework of error handling drawn from psychology
research. Analyses of representative instances are given and
discussed in relation to software engineering research that
examines practice at the desk. Findings demonstrate that the
significance of active error in software development is personal,
shaped by passing time, the emergence of preferred practices and
environmental changes.

Keywords—empirical studies; software development; software
engineering; human error

I. INTRODUCTION
Error in software engineering is commonly described using

terms like fault, defect or bug. These concepts represent
elements of software in operation that threaten or produce
undesirable or unintended deviations from specified behavior
[1]. A bug is material, it can be tracked into source code,
judgments can be made about what was done wrong and
decisions taken about how it should be removed. It is not
always possible to determine the circumstances under which a
bug was written, or why [2]. Nevertheless, bugs are largely
considered to be the result of human error and are often
attributed to poor understanding, inexperience, lack of skill, or
incompetence.

Using concepts developed in psychology and safety
science, this paper considers error in a different sense. Errors
are actively experienced, with effects that can be felt [3]. They
arise at moments in which a planned sequence of mental or
physical activities fails to achieve its intended outcome. Such
errors are ephemeral, and as a result there are often few
material traces [4] left within code, descriptions or project
records.

In this report, the terms error or active error will be used to
refer to errors that are experienced. Error handling will be
used to describe the process by which errors are detected,
identified and recovered from [3]. Instances of error handling
will be referred to as encounters, incidents, problems or issues.

II. METHOD
How do developers find and fix things that go wrong

during software development? Error is commonly examined to
assess why a software system suffered critical failure [5] or to
improve software dependability [6]. Failures are considered to
result from latent errors [3], and studies establish their causes
by performing retrospective analyses on failed tests, bug or
modification reports. Gaining access to software development
sites is difficult [7], particularly when sought to examine
mistakes [8].

Examination of active error requires naturalistic data [9].
Occurrences must be observable or reported by the people who
experience them. With notable exceptions [10], error that arises
during software development at points other than testing or
integration is not well understood [8]. Problems in
professional software development can take a while to solve
[11]. Taken together, these points suggest a need for
observation of practice over time, rather than by examining
particular tasks or time-slices. Analysis must be prospective
[12], following activity at the desk forward [13], rather than
starting from outcomes and performing deductive analyses of
events that occurred in the past [10].

The research reported here is one of three ethnographically-
informed [14] studies in which the authors have examined error
in software development practice. Research was conducted by
observing developers in the field, and using data collected from
interviews and gleaned through secondary observation [15] of
films that depict software design and development activity at
the desk. Data for this study was drawn from participant-
created [16] video recordings of development and related
sources including source code repositories, social media and
blog posts. The materials were created in 2009, and are
accessible on the Internet. Each film includes a screencast of
desktop interaction and audio recording.

The pair of developers who created the videos granted
permission for use in research. Pseudonyms have been
provided to informants across studies. The names Marcus and
Joe are used to refer to the pair in the text that follows.

A. Sources
The films depict Marcus and Joe as they create extensions

to an open-source, wiki-based acceptance test framework.
They write stories within the test framework that define new
functionality they intend to add, and use the Eclipse integrated
development environment (IDE) to write classes and tests in
the Java language.

 978-1-5090-0252-8/16/$31.00 ©2016 IEEE
crownCrownIEEE

ERC Advanced Grant 291652 - ASAP and SFI grant 13/RC/2094

www.manaraa.com

Marcus and Joe pair at the desk. One writes a unit test,
defining proposed behavior for a class, while the other
completes the implementation by adding classes or altering
methods. The pair also use a Java interface written by Marcus
some months prior to filming. This application programming
interface (API) is referenced directly, and examples are
consulted and borrowed from the documentation.

Each developer is familiar with the acceptance test
framework, though Marcus has more recent experience in
developing it. By contrast, Joe exhibits greater familiarity and
responsibility for the development tools that are being used.

A. Analysis
Principles of thematic analysis were used to segment,

catalog and identify instances for examination. This method
was selected because it is not overly structured, and analyses
can be made independently of theory and epistemology [17].
These features made it possible to investigate related literatures
while considering themes within the films and by comparing
instances to data being examined for the other two studies.

A master catalog was created of the entire corpus of
material. 20 films created over the course of a month were
selected and transcribed for analysis. 18 were iteratively
segmented and cataloged to isolate 68 instances of active error.
43 instances were thematically coded for evidence of error
handling.

Taken together, many incidents are less than five minutes
in length, though others span longer sequences of time. The
longest spanned fifty minutes and two films. In most cases,
incidents are resolved on camera within a single film. Each of
the instances used in reporting below spanned a minute or two.

III. FINDINGS
Error handling is generally described as a three-stage

process [18]. A person must know that an error has occurred,
identify both what was “done wrong” and “what should have
been done” and then understand how to “undo” the effects of
the error [19, p. 476]. Handling unfolds in the course of
“progressive” problem solving. An error is suspected or
detected, and an evaluation is made to identify the source of
the problem [20]. Environmental cues supply feedback to the
problem solver by blocking forward progress [9],
communicating about problems in system state [21] or by
circumstantially guiding a problem solver to recovery [3].

Following this rubric, features of active error are illustrated
in the following sections using statements and exchanges of
dialogue between Marcus and Joe.

A. Slips of Action
Actions sometimes do not go as planned, or were not

intended. They are often simple, routine, and are commonly
detected in the act based on perceptions that arise while doing
something [19]. Often described in software engineering in
terms of backtracking [13], they could also be described as
slips of action [9]. Selecting the wrong item from a drop down
menu or improperly referencing a variable are two examples:

Marcus: Oops, that's not what I want to do. (Ep. 12,
00:04:45)

Joe: No can't do that cause it's. Oh we can move it outside
the [try block]… (Ep. 7, 00:06:51)

In these cases, each developer gives a clear indication that
something is wrong. What should have been done is evident,
and recovery is simple. It is likely that Marcus caught his error
in the act. Detection is also commonly made by assessing
outcomes, and Joe’s statement suggests that he may have
responded to effects his actions had on the development
environment.

B. The Shape of Experience
Marcus and Joe are using an IDE, and follow principles of

test-driven development [22]. Practice is error-directed: the
pair write tests for intended behavior that initially fail, and are
then proven within the implementation. In these circumstances,
Marcus and Joe expect problems to be signaled by system
responses [21]: red bars under method calls or arguments, error
messages in the problems pane, or stack traces in the web
browser.

Error handling is often required when conditions and
situations are novel [23], when something comes up that has
not been seen or done before. This is true even in the context
of error-directed practice. Marcus and Joe may use and rely
upon system responses to organize practice, but when an active
error arises they are surprised and may be “stumped”. They
question outcomes [10], express uncertainty about how to
proceed or communicate that they do not understand what is
wrong.

Attention is often commanded because conditions are
unexpected or new, but subsequent handling may draw upon
knowledge gained through previous experience. The situation
can turn out to be familiar. The following exchange
demonstrates both perspectives:

Marcus: Now this is something to do, I had to solve this
recently and I can't remember how I did it.

Joe: It's an import, you need to import it, don't you? Or it
needs to be umm, oh wait, its trying to execute that as a--

Marcus: --It’s the, the look. There's a, I did this before. It's
to do with the way it does the test running stuff. (Ep. 2,
00:20:43)

Joe makes three guesses about the source of the problem.
Guessing is informal and pervasive within the catalog, used to
direct handling. Guesses may be confident or timid, but are
often wrong. Sometimes ideas are put forward that are partially
informed, such Marcus’ proposal about the source of the
problem. However, guesses are also often made solely in
response to behavior that is observed in the software. In Joe’s
case, they are an indicator of novelty, and suggest that he has
encountered a problem that will require conscious problem
solving [36].

In some handling processes, prior knowledge is well
formed. It may even match the situation at hand so closely, it
can be applied as a “recipe” or rule [24]:

www.manaraa.com

Marcus: So we have a problem there...that I've noticed
happens sometimes. If you actually stop it, now go back to
Eclipse and stop it. And then start it again… (Ep. 1, 00:08:18)

Recovery using the rule is straightforward. Marcus has seen
the issue and is able to provide Joe with a mechanism for
recovery. The solution is clear, but the circumstances
surrounding the issue’s earlier occurrence are unknown:
Marcus does not indicate how difficult it was to solve, what
was tried or how long it took.

C. Forming Patterns of Practice
To understand how knowledge forms, it is necessary to

compare data across instances. There is evidence in the catalog
of the same error occurring in three different films that were
made on different days. In each case, Marcus and Joe do not
extend an exception class when it is created to satisfy
conditions in a test. Here is what handling looks like the first
time the error is signaled by a red bar:

Joe:...why is that complaining? Oh that's because we
haven't got the constructors.

Marcus: That's right.

Joe: Oh, no, that's not, it says it’s not a subtype of
Exception. Oh [The class giving the error is opened]--

Marcus: --‘Cause it doesn't extend RuntimeException (Ep.
7, 00:02:57)

Detection in this case is delayed, spurred during later
practice when Joe tries to throw the exception. This kind of
error could be interpreted as latent and analyzed deductively to
determine the cognitive failure that led to its introduction in the
code [10]. However, it is also possible to follow problem
solving forward. Joe makes a guess about the source of the
problem, signaling a shift from detection to identification and
the pair undertake a brief cycle of local problem solving [3] to
identify what is wrong.

The value of prospective analysis is made clearer by
examining the subsequent occurrences. The second time a
detection is made, the issue is familiar. Circumstances are
slightly different; this time Marcus is adding a constructor to
the exception class when a red bar appears. Joe is able to
swiftly identify the source of the problem, and he takes
responsibility for the error. He indicates that it might have
been avoided:

Joe: Oh, that's 'cause it doesn't extend runtime. I was lazy
and I didn't (inaudible).

Marcus: But do you know what? Actually, ...I think now is
the right time to actually put that in there. (Ep. 11, 00:16:53)

Joe explains that the error was one of omission and that the
class had not been created with strategic oversight [3].
However, Marcus counters that the omission is acceptable,
because it upholds a preferred practice. This instance
represents an example of the development of know-how or the
formation of a rule-of-thumb. Rules in this sense are cultural
[24], a point that is emphasized in these exchanges. The pair
may be following principles of test-driven development and

object oriented programming, but reserve the right to determine
how classes are managed in relation to one another, even if this
results in an error that reoccurs.

Joe’s handling the third time enforces the practice and
demonstrates the prior knowledge he has gained. There is no
additional dialogue about how the error should be handled. It
is still unexpected, but familiar, and handling has become
routine. It is an error that can be caught more or less in the act
and one that can be quickly recovered from using a rule.

Joe: Ahh [a red bar appears in the IDE]. So we didn't
include the, when we created it we haven't made it extend
exception. So now to make it... runtime exception. And we need
a constructor with a message… (Ep. 18, 00:15:26)

IV. RELATED WORK
In examining how developers find and fix things that go

wrong, the findings presented here contribute to several
existing strands of research.

Error handling has long been known to escape the confines
of tools and processes associated with bugs. Root-cause
analyses adopted a simplified definition of what errors are [2]
in an effort to produce measurable improvements in software
production [8]. Bug reports have been shown to be incomplete
and inaccurate, with gaps of information that must be filled
during practice through interaction [26]. Bug tracking tools are
adapted to keep track of information about “almost bugs” [27],
just as comments are used to track work that is ongoing [28].
Bugs are reassigned so developers that can be addressed by
people who have active experience [29].

Errors become meaningful in terms of how they are
described. In this study, analysis drew on Miyake’s description
of constructive interaction, an analytic that examines what
people say when they solve problems together [30]. Mitigating
the limitations associated with asking people to think-aloud
[31], pairs undertaking tasks together naturally explain what
they are thinking and give reasons for their ideas. The analytic
can be employed in familiar environments, thereby producing
dialogue and actions that reflect habits and patterns that are
“typical” of a culture [13, p. 230].

Findings given in this report join other uses of the analytic
that have examined how programmers use tools to restructure
code [13], human computer interaction [32], collaboration [33]
and team work [34]. Though they do not specifically cite
constructive interaction as a methodological orientation,
studies that examine pair programming likewise benefit from
access to naturalistic exchanges of dialogue. Dialog-based
verbalization is necessary during pair programming [35] and
the activity has been studied for evidence of cognitive
attributes like attention [36], and engagement [37].

The investigative process described here as local problem
solving has been characterized in computing research as
“bottom up”. In the stories Eisenstadt gathered, developers did
not systematically test hypotheses. Instead, they were found to
have a rough idea of what they were looking for that they
pursued in a process described as gathering data [38]. This

www.manaraa.com

phenomenon has also been described as asking “Why?” [10],
information seeking [39] or scent-following [40].

V. DISCUSSION
Error at the desk is not confined to activities that are

normally associated with bugs. Errors arise when behavior is
specified in tests, while classes are implemented, in periods
when functionality is introduced and modified. They occur in
relation to software that is being used and written and are
primarily signaled by system responses. They are apparent:
work is interrupted and developers clearly indicate that they are
surprised.

As the examples show, error handling is often simple and
compressed. However, sometimes recovery requires several
rounds of local problem solving [3]. Guided by system
responses [6], information gathering [38] is interspersed by
manipulations of the environment. Mechanisms that might fix
a problem are proposed at different points, sometimes more
than once. Thus, though the successful removal of a system
response is often noted, the fix itself often is not remarked
upon at recovery.

Identification is enabled by how well developers assess and
respond to circumstances in the immediate environment. The
developers do not only read and respond to textual information
or system responses. Assessments are also subtler: detection
might be made if the layout of a page is different or if
information designed into a system response by the developer
is missing or incomplete.

Error handling can be prolonged. A single sequence of
activity may represent the entire process, however some
occurrences thread through the completion of other tasks.
These issues invariably relate to “higher-order” concerns such
as how to define conceptual boundaries for classes or how an
object in a model should be expressed using features of a
language. Incremental progress is made through verbal
consensus that satisfies the developers and permits the issue to
be set aside. In all cases, a subsequent instance occurs in
which changes are made to the software.

The aim in handling is to get moving again, not to
understand. This was demonstrated in the findings by
juxtaposing how prior experience is used with novel
experience. Joe did not need to understand why the
mechanisms given to him by Marcus fixed the problem; he
only needed to employ them. Likewise, partial understanding
formed by Marcus during a prior experience was enough to
direct a similar process that occurred later. The suggestion is
given that gaps in understanding are acceptable and that
fragments of knowledge are sufficient. Beyond acknowledging
that something is “strange” or “weird”, the developers do not
always exhibit curiosity to learn more.

Recovery is not always permanent or complete. Errors are
allowed to reoccur when they support a preferred practice.
Circumstances may be similar, but handling will change as the
issue becomes more familiar. Evidence is also given of issues
in which handling is aborted. Severe incidents are unstable:
investigations get out of hand, the developers indicate that they
are lost or anxious, and that they find the process stressful.

Errors may be encountered together, but they are
experienced alone. The findings demonstrate that an issue may
be new to one developer and familiar to the other. Likewise,
Marcus and Joe do not always notice that something has gone
wrong at the same moment, or attribute the same significance
to system responses or behaviors. Information is often freely
given, but not received: the developer at the desk may not
respond to suggestions given about actions to take or warnings
about problems. At times, each developer appears to privilege
behavior in the environment over what he is told, only making
a detection once he can assess effects. Thus the same error
may be caught in the act by one developer, but be detected
based on outcomes by the other.

Working together serves error handling in several ways.
Dialogue and commentary are important sources of feedback.
Comments can focus a partner’s attention, correct an
assessment, or trigger an evaluation. The act of explaining a
choice triggered detection in one case. Evidence was also
given that pairs guide each other on occasion, dictating
changes to be made in the code. Unlike the examples of
recipes or rules given in the findings, the steps in these cases
are not intended to produce a recovery for the error. Instead,
they are given to stabilize the process, restoring immediate
behavior so that problem solving can continue.

VI. LIMITATIONS
This study performed detailed analysis on the actions of

two developers. Findings are descriptive and may not extend
to developers working in other circumstances. Data was drawn
from secondary sources that were gleaned for data, and
limitations on analysis were made by elements of the
production. The camera depicts a limited view of activity, and
it was necessary to account for gaps between tapings and
technical difficulties in later films.

VII. CONCLUSION
Error handling suffuses software development practice.

Emphasis was given to error handling, the process undertaken
to detect, identify and recover from an error. Findings
demonstrate detections made in the act and based on outcomes,
qualitative factors that influence identification, and how
tracking error handling over time reveals details about how
professional experience develops.

The meaning associated with an active error is personal. Its
significance may diminish or develop, as a developer takes on
new projects, in different environments and with different
tools. Observations related to problem-solving and practice are
consistent with findings in other software engineering research,
but are revealed here to be representative more generally of
human error as it has been conceived in other fields. Many
additional questions may be asked of the data, and there are
undoubtedly implications for tool development and
methodology, two areas of work to be undertaken in the future.

ACKNOWLEDGMENT
We thank the developers who informed this research.

www.manaraa.com

REFERENCES
[1] .A. Avižienis, J. C. Laprie, and B. Randell, ‘Dependability and its

threats: a taxonomy’, in Building the Information Society, vol. 156, R.
Jacquart, Ed. Springer Boston, 2004, pp. 91–120.

[2] A. Endres, ‘An analysis of errors and their causes in system programs’,
in Proceedings of the International Conference on Reliable Software,
1975, pp. 327–336.

[3] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[4] J. Scott, A matter of record: documentary sources in social research,

vol. 12. Polity Press Cambridge, 1990.
[5] B. Randell, ‘On failures and faults’, in FME 2003: Formal Methods,

vol. 2805, K. Araki, S. Gnesi, and D. Mandrioli, Eds. Springer Berlin /
Heidelberg, 2003, pp. 18–39.

[6] B. Randell, ‘Dependability-a unifying concept’, in Proceedings of the
Conference on Computer Security, Dependability, and Assurance: From
Needs to Solutions, 1998.

[7] S. Easterbrook, J. Singer, M. A. Storey, and D. Damian, ‘Selecting
empirical methods for software engineering research’, Guide to
advanced empirical software engineering, pp. 285–311, 2008.

[8] D. E. Perry, ‘Where do most software flaws come from?’, in Making
Software: What Really Works, and Why We Believe It, A. Oram and G.
Wilson, Eds. O’Reilly Media, Inc., 2010, pp. 453–494.

[9] D. A. Norman, ‘Categorization of action slips.’, Psychological review,
vol. 88, no. 1, pp. 1–15, 1981.

[10] A. J. Ko and B. A. Myers, ‘A framework and methodology for studying
the causes of software errors in programming systems’, Journal of
Visual Languages & Computing, vol. 16, no. 1, pp. 41–84, 2005.

[11] T. Lopez, M. Petre, and B. Nuseibeh, ‘Getting at ephemeral flaws’, in
Cooperative and Human Aspects of Software Engineering (CHASE),
2012 5th International Workshop, 2012, pp. 90–92.

[12] J. Rasmussen, ‘The role of error in organizing behaviour’, Ergonomics,
vol. 33, no. 10–11, pp. 1185–1199, 1990.

[13] R. W. Bowdidge and W. G. Griswold, ‘How software engineering tools
organize programmer behavior during the task of data encapsulation’,
Empirical Software Engineering, vol. 2, no. 3, pp. 221–267, 1997.

[14] H. Sharp, H. Robinson, and M. Woodman, ‘Software engineering:
community and culture’, Software, IEEE, vol. 17, no. 1, pp. 40 –47, Feb.
2000.

[15] M. K. McGinn, ‘Secondary data’, in The Sage encyclopedia of
qualitative research methods, L. M. Given, Ed. Sage Publications, 2008.

[16] M. Hammersley and P. Atkinson, Ethnography: Principles in practice.
Routledge, 2007.

[17] V. Braun and V. Clarke, ‘Using thematic analysis in psychology’,
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

[18] F. C. Brodbeck, D. Zapf, J. Prümper, and M. Frese, ‘Error handling in
office work with computers: A field study’, Journal of occupational and
organizational psychology, vol. 66, no. 4, pp. 303–317, 1993.

[19] A. J. Sellen, ‘Detection of everyday errors’, Applied Psychology, vol.
43, no. 4, pp. 475–498, 1994.

[20] C. M. Allwood, ‘Error detection processes in statistical problem
solving’, Cognitive science, vol. 8, no. 4, pp. 413–437, 1984.

[21] C. Lewis and D. A. Norman, ‘Designing for Error’, in User Centered
System Design, Erlbaum Associates, Inc., 1986.

[22] S. Ambler, ‘Introduction to test driven development’, 2012. [Online].
Available: http://www.agiledata.org/essays/tdd.html.

[23] D. A. Norman and T. Shallice, ‘Attention to action’, in Consciousness
and Self-Regulation, R. J. Davidson, G. E. Schwartz, and D. Shapiro,
Eds. Springer US, 1986, pp. 1–18.

[24] J. Rasmussen, ‘Human error data. Facts or fiction?’, Riso National
Laboratory, Roskilde, Denmark, 1985.

[25] Y. Dittrich, D. W. Randall, and J. Singer, ‘Software engineering as
cooperative work’, Computer Supported Cooperative Work, vol. 18, no.
5–6, pp. 393–399, 2009.

[26] J. Aranda and G. Venolia, ‘The secret life of bugs: going past the errors
and omissions in software repositories’, in Proceedings of the 2009
IEEE 31st International Conference on Software Engineering, 2009, pp.
298–308.

[27] D. Bertram, A. Voida, S. Greenberg, and R. Walker, ‘Communication,
collaboration, and bugs: The social nature of issue tracking in software
engineering’, in Proc. ACM Conf. Comput. Support. Coop. Work, 2010.

[28] M. A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, ‘TODO or to
bug’, in Software Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on, 2008, pp. 251–260.

[29] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ‘Not my bug!
and other reasons for software bug report reassignments’, in
Proceedings of the ACM 2011 conference on Computer supported
cooperative work, 2011, pp. 395–404.

[30] N. Miyake, ‘Constructive interaction and the iterative process of
understanding’, Cognitive Science, vol. 10, no. 2, pp. 151–177, 1986.

[31] J. Hughes and S. Parkes, ‘Trends in the use of verbal protocol analysis
in software engineering research’, Behaviour & Information
Technology, vol. 22, no. 2, pp. 127–140, 2003.

[32] D. Wildman, ‘Getting the most from paired-user testing’, interactions,
vol. 2, no. 3, pp. 21–27, Jul. 1995.

[33] N. V. Flor, ‘Side-by-side collaboration: A case study’, International
Journal of Human-Computer Studies, vol. 49, no. 3, pp. 201–222, 1998.

[34] N. V. Flor and E. L. Hutchins, ‘A case study of team programming
during perfective software maintenance’, in Empirical studies of
programmers: Fourth workshop, 1991, p. 36.

[35] S. Xu and V. Rajlich, ‘Dialog-based protocol: an empirical research
method for cognitive activities in software engineering’, in Empirical
Software Engineering, 2005. 2005 International Symposium on, 2005, p.
10–pp.

[36] A. Sillitti, G. Succi, and J. Vlasenko, ‘Understanding the impact of pair
programming on developers attention: a case study on a large industrial
experimentation’, in Proceedings of the 2012 International Conference
on Software Engineering, 2012, pp. 1094–1101.

[37] L. Plonka, H. Sharp, and J. Van der Linden, ‘Disengagement in pair
programming: does it matter?’, in Software Engineering (ICSE), 2012
34th International Conference on, 2012, pp. 496–506.

[38] M. Eisenstadt, ‘My hairiest bug war stories’, Communications of the
ACM, vol. 40, no. 4, pp. 30–37, 1997.

[39] A. J. Ko, R. DeLine, and G. Venolia, ‘Information needs in collocated
software development teams’, in Proceedings of the 29th international
conference on Software Engineering, 2007, pp. 344–353.

[40] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, ‘How programmers debug, revisited: An information foraging
theory perspective’, Software Engineering, IEEE Transactions on, vol.
39, no. 2, pp. 197–215, 2013.

